Rho-ROCK-LIMK-cofilin pathway regulates shear stress activation of sterol regulatory element binding proteins.

نویسندگان

  • Tong Lin
  • Lingfang Zeng
  • Yi Liu
  • Kathryn DeFea
  • Martin A Schwartz
  • Shu Chien
  • John Y-J Shyy
چکیده

Previous studies have shown that integrin activation and fluid shear stress can modulate the activity of sterol regulatory element binding proteins (SREBPs) in vascular endothelial cells. We investigated the role of small GTPase Rho-mediated signal transduction pathway in this mode of SREBP activation. Fluid shear stress activates the Rho downstream effectors ROCK, LIM kinase (LIMK), and cofilin. The various negative mutants of RhoA, ROCK, LIMK, and cofilin can block the shear stress activation of SREBPs. The shear stress-activated SREBP depends on S2P proteases but not caspase-3. Mechanistically, the endoplasmic reticulum-to-Golgi transport of SREBP cleavage-activating protein requires the actin-based cytoskeleton and is enhanced by the Rho-ROCK-LIMK-cofilin pathway. By enhancing the SREBP-mediated cholesterol metabolism, this unique mechanism may contribute to endothelial cell functions under flow.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hyperosmotic stress induces Rho/Rho kinase/LIM kinase-mediated cofilin phosphorylation in tubular cells: key role in the osmotically triggered F-actin response.

Hyperosmotic stress induces cytoskeleton reorganization and a net increase in cellular F-actin, but the underlying mechanisms are incompletely understood. Whereas de novo F-actin polymerization likely contributes to the actin response, the role of F-actin severing is unknown. To address this problem, we investigated whether hyperosmolarity regulates cofilin, a key actin-severing protein, the ac...

متن کامل

Cytoplasmic p21 Is Involved in Ras-induced Inhibition of the ROCK/LIMK/Cofilin Pathway*

Accumulating evidence suggests that p21 located in the cytoplasm might play a role in promoting transformation and tumor progression. Here we show that oncogenic H-RasV12 contributes to the loss of actin stress fibers by inducing cytoplasmic localization of p21, which uncouples Rho-GTP from stress fiber formation by inhibiting Rho kinase (ROCK). Concomitant with the loss of stress fibers in Ras...

متن کامل

Activation of Rho GTPases in Smith-Lemli-Opitz syndrome: pathophysiological and clinical implications.

Smith-Lemli-Opitz syndrome (SLOS) is a malformation syndrome with neurocognitive deficits due to mutations of DHCR7 that impair the reduction of 7-dehydrocholesterol to cholesterol. To investigate the pathological processes underlying the neurocognitive deficits, we compared protein expression in Dhcr7(+/+) and Dhcr7(Delta3-5/Delta3-5) brain tissue. One of the proteins identified was cofilin-1,...

متن کامل

Cytoplasmic p21Cip1 is involved in Ras-induced inhibition of the ROCK/LIMK/cofilin pathway.

Accumulating evidence suggests that p21(Cip1) located in the cytoplasm might play a role in promoting transformation and tumor progression. Here we show that oncogenic H-RasV12 contributes to the loss of actin stress fibers by inducing cytoplasmic localization of p21(Cip1), which uncouples Rho-GTP from stress fiber formation by inhibiting Rho kinase (ROCK). Concomitant with the loss of stress f...

متن کامل

LIM kinase and Diaphanous cooperate to regulate serum response factor and actin dynamics

The small GTPase RhoA controls activity of serum response factor (SRF) by inducing changes in actin dynamics. We show that in PC12 cells, activation of SRF after serum stimulation is RhoA dependent, requiring both actin polymerization and the Rho kinase (ROCK)-LIM kinase (LIMK)-cofilin signaling pathway, previously shown to control F-actin turnover. Activation of SRF by overexpression of wild-t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation research

دوره 92 12  شماره 

صفحات  -

تاریخ انتشار 2003